NAVER CLOVA CLOCK+ PRODUCT ENVIRONMENTAL REPORT

제품환경보고서 요약

환경개선을 위한 네이버의 활동

본 보고서는 네이버社의 Clova Clock+의 전과정(Life Cycle)에 걸친 환경영향을 나타내고 있습니다. 전자제품의 환경영향은 사용단계의 에너지 사용이 가장 큰 비중을 차지하지만, 이를 개선하기 위해서는 제품의 설계 및 생산단계부터 전과정에 걸친 환경영향을 고려해야 합니다. 따라서 제품의 제조전단계, 제조단계, 사용단계, 폐기단계에 대한 환경영향을 분석하여 제품 환경성을 개선하기 위한 발판을 마련하고자 합니다.

제품 환경성 주요정보

네이버 Clova Clock+는 환경에 미치는 영향을 줄이기 위해 다음과 같은 요소를 고려하였습니다.

- RoHS 준수
- 재활용이 용이한 종이 재질 포장재 96% 이상 사용

온실가스 배출량

전자제품은 제조전단계(원료물질), 제조단계, 사용단계 및 폐기단계에 걸친 온실가스 배출량을 합산하여 전과정 온실가스 배출량을 산정할 수 있습니다.

네이버는 Clova Clock+로 인해 발생하는 온실가스를 저감하기 위해, 전과정평가(LCA, Life Cycle Assessment)를 수행하여 온실가스 배출의 주요 원인 및 인자를 규명하고자 합니다.

온실가스 예상배출량

단계별 온실가스 배출량 및 기여도

구분	단위	제조전단계	제조단계	사용단계	폐기단계	합계
온실가스 배출량	kg CO ₂ -eq.	1.7	1.6	30.0	0.3	33.7
비율	%	5.1%	4.9%	89.0%	1.0%	100.0%

제품 재질구성

Clova Clock+은 아래의 재질로 구성되어 있습니다.

재질	무게(g)	비율(%)	
 플라스틱	300.8	65.4%	
철금속	105.7	23.0%	
회로기판 및 소자	47.8	10.4%	
기타	5.7	1.2%	

포장재 재질구성

Clova Clock+은 천연자원의 보존 및 재활용의 활성화를 위해 재활용이 용이한 종이 재질의 포장재를 96% 이상 사용하고 있습니다.

재질	무게(g)	비율(%)	
종이	124.5	96.9%	
 플라스틱	3.9	3.1%	

제3자 검증

한국전과정평가학회 제3자 검증 수행 (국문·영문 검증서 발행)

명칭

Clova Clock+

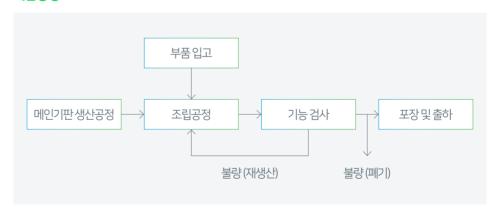
분류

인공지능 스피커 (Al Speaker)

정의

인공지능 클로바와 AI 리모컨이 하나로 합쳐진 스마트홈 스피커

구성요소


- Main PCB Assembly
- LED PCB Assembly
- Touch, Sensor Assembly
- Enclosure
- Front Window
- Accessary and Package

주요기능

인공지능 알고리즘을 기반으로 사용자의 음성을 인식하여 아래 기능을 수행함.

- 음악추천 및 감상, 음성 검색, 스마트홈, 일정관리, 키즈컨텐츠, 알람/타이머, 날씨(미세먼지 포함) 알림 등

제품공정

공정	내용	비고
메인기판 생산공정	CLOVA CLOCK 등 메인보드 생산	수출용제품 메인보드도 같이 생산함
조립공정	메인보드, 서브보드 조립, 외장 조립 등	기능검사 불량제품 중 재생산 가능한 제품 생산라인 재투입
기능검사	제품 기능검사	
포장 및 출하	제품 포장 및 출하	

제품사진

기기 정보

기자재의 명칭	특정 소출력 무선기기 (무선랜을 포함한 무선접속시스템용 무선기기)
모델명	NL-S700KRL
제품무게	460g
제품크기	166.0mm X 81.00mm X 87.50mm
스피커 출력	5W
사용전원	DC 5V, 2A
블루투스	블루투스 5.0
와이파이	802.11a/b/g/n/ac (2.4GHz/5GHz)
배터리	내장 배터리 없음
디스플레이	4 Digits + colon - White LED Icon - 3 ea (Alarm, PM, Weather Display) - Color LED - 2 ea (Dust icon, CLOVA Display)

인증정보

- 인증 종류 및 번호: KC인증 / R-R-IMW-NL-S700KRL
- 인증받은 자의 상호: 인포마크

개별시나리오 PCR 참고사항

현재 인공지능 스피커에 관한 PCR이 부재하므로, 에너지사용제품에 대한 환경성적표지의 일반지침을 적용하였으며, 사용시나리오에 경우 사용자 사용패턴을 바탕으로 네이버 자체적으로 구축한 시나리오를 반영함.

제3자 검증

한국전과정평가학회 제3자 검증 수행 (국문·영문 검증서 발행)

전과정평가

기능단위

Clova Clock+ 1대

사용시나리오

- 사용단계에서의 별도 소모품 사용은 없으며, 사용 시 소비되는 에너지(전기) 사용량을 포함함.
- 매일 2시간 사용하는 것으로 가정하며 수명은 4년으로 가정함.

제외기준

선정기준

- 연간 원부자재 투입량을 기준으로 누적질량기여도를 계산하여 제외기준 상위 95% 이상을 선정함.
- 제품 제조공정으로 투입되는 원료·보조물질 중 누적질량기여도 기준으로 상위 95%에 해당하는 모든 조립품 및 부품 수준(Lev 1)의 물질사용량을 포함함.
- 단, 질량 기준에서 제외되더라도 환경에 미치는 영향이 큰 물질은 추가적으로 포함함. (예. 인쇄회로기판)

선정결과

(1) 제품

번호	품목명	질량기여도 [%]	누적기여도 [%]	비고
1	IF-S1301N ASS'Y CASE REAR	35.45%	35.45%	포함
2	IF-S1301N ASS'Y ENCLOSURE	33.69%	69.15%	포함
3	IF-S1301N ASS'Y BRACKET FRONT	10.35%	79.49%	포함
4	WINDOW FRONT	5.96%	85.45%	포함
5	회로 / Main / IF-S1301N / Clock / KR	4.93%	90.39%	포함
6	회로 / SUB LED / IF-S1301N(CLOCK) / VN	3.78%	94.17%	포함
7	Screw TP_BH_M2.6XL8.0	1.43%	95.60%	포함
8	회로 / SUB TOUCH / IF-S1301N(CLOCK) / VN	1.11%	96.71%	포함
9	Shield Can	0.48%	97.19%	제외
10	회로 / SUB USB / IF-S1301N(CLOCK) / VN	0.46%	97.65%	포함
11	SHEET FRONT WHITE	0.46%	98.10%	제외
12	FOOT RUBBER	0.43%	98.54%	제외
13	SCREW-M2X6	0.26%	98.80%	제외
14	BRACKET IRDA	0.22%	99.02%	제외
15	BRACKET COVER IRDA	0.22%	99.23%	제외
16	CUSHION BRACKET TOP	0.19%	99.42%	제외
17	회로 / SUB SENSOR / IF-S1301N(CLOCK) / VN	0.11%	99.53%	포함
18	FFC-B type, Touch	0.11%	99.64%	제외
19	ADHESIVE LED	0.10%	99.73%	제외
20	FFC-A type, USB	0.09%	99.82%	제외
21	FFC-A type, LED	0.08%	99.90%	제외
22	ADHESIVE PCB TOP	0.06%	99.96%	제외
23	ADHESIVE FIX CONNECTOR	0.03%	99.99%	제외
24	ADHESIVE LLMINANCE	0.00%	99.99%	제외
25	CUSHION PCB MAIN	0.00%	100.00%	제외
26	CUSHION PCB USB	0.00%	100.00%	제외
27	Conductive Tape	0.00%	100.00%	제외

(2) 최소포장재

번호	품목명	질량기여도 [%]	누적기여도 [%]	비고
1	GIFT BOX	62.5%	62.5%	포함
2	PAD-GIFT BOX-BOTTOM	15.9%	78.4%	포함
3	PAD-GIFT BOX-TOP	6.9%	85.2%	포함
4	QSG	5.8%	91.0%	포함
5	PAD-GIFT BOX-CABLE	3.4%	94.4%	포함
6	VINYL BAG-DEVICE	3.1%	97.4%	포함
7	SPEECH GUIDE	2.2%	99.6%	제외
8	LABEL-VOID	0.2%	99.8%	제외
9	LABEL-GIFT BOX	0.1%	99.9%	제외
10	LABEL-DEVICE	0.1%	100.0%	제외

(3) 출하포장재

번호	품목명	질량기여도 [%]	누적기여도 [%]	비고
1	LABEL-CARTON BOX	89.7%	89.7%	포함
2	CARTON BOX	9.5%	99.2%	포함
3	PAD-CARTON BOX	0.8%	100.0%	제외

할당

- 2020.6 ~ 2020.8 동안 제품이 생산된 남사공장은 메인보드 생산공정과 조립공정의 에너지 사용량이 구분되지 않으므로, 둔전공장 원단위 전기사용량을 바탕으로 각 단위공정의 총 전기사용량을 할당한 후 각 단위공정별 생산량으로 할당함.
- 2021.5 ~ 2021.6 동안 제품이 생산된 둔전공장은 메인보드 생산 공정과 조립공정의 에너지 사용량이 구분되므로, 각 단위공정별 에너지 사용량을 각 단위공정별 생산량으로 할당함.
- 2021.5 ~ 2021.6 동안 제품이 생산된 둔전공장은 메인보드 생산공정과 조립공정의 용수 사용량이 별도로 관리되지 않으므로, 남사공장의 용수 사용량을 각 단위공정별 생산량으로 할당함.

데이터 수집

대한민국의 국가 DB를 사용하였으며, 국가 DB가 없을 경우 해외 DB(ecoinvent)를 이용하였음.

(1) 원부자재

- 제품 BOM을 기반으로 실제 부품 무게측정을 통해 원료물질 투입량 수집
- 제품 생산량 및 불량 데이터 수집하여 불량률을 기반으로 원부자재 투입량 및 공정폐기물 발생량 계산치 산정

(2) 전력사용량

- 전기요금 고지서를 바탕으로 전기 사용량 수집

(3) 기티

- 용수 검침일지를 바탕으로 용수 사용량 수집

데이터 품질

- 시간적 범위: 2020-06~2021-06

- 지리적 범위: 대한민국

- 기술적 범위: 적용가능한 최신 기술

시스템 경계

에너지사용제품에 대한 시스템 경계는 제품 제조전 단계, 제품 제조 단계, 사용 단계, 폐기단계를 포함하며, 제조 단계 이후 출고되는 제품의 수송을 포함함.

에너지사용제품의 시스템 경계

제품 재질구성

제품 주요 재질구성은 다음과 같음. (중량을 백분율로 표시)

(1) 제품

재질	구성비 (%)
PC-ABS Alloy	57.0%
SPCC+FERRITE	20.5%
인쇄회로기판	10.4%
ACRYLE	6.0%
Steel	2.0%
PC	1.5%
SUS	0.5%
PC Sheet	0.5%
Silicone	0.4%
PSR PORON	0.3%
NYLON/PBT GF30%	0.2%
WIRE+SPONGE	0.2%
PET	0.2%
PVC	0.1%
EVA Sheet	0.1%
WIRE	0.1%
PE	0.0%
Conductive Fabric	0.0%
SILICONE+PE	0.0%

(2) 최소포장재

재질	구성비 (%)	
골판지	88.6%	
모조지	5.8%	
PE Vinyl	3.1%	
펄프지	2.2%	
백색 유포지	0.4%	

(3) 출하포장재

재질	구성비 (%)
백색 유포지	89.7%
골판지	10.3%

전과정 영향평가

환경성적표지 인증 대응을 위한 ez-EPD 프로그램 및 특성화인자를 적용하여 산정되었음.

(1) 전과정 단계별 잠재적 영향

환경영향범주	단위	제조전단계	제조단계	사용	폐기	총값
 자원발자국	kg Sb-eq.	1.038E-02	1.035E-02	1.897E-01	7.942E-04	2.112E-01
탄소발자국	kg CO₂-eq.	1.707E+00	1.638E+00	3.000E+01	3.461E-01	3.369E+01
오존층영향	kg CFC-11-eq.	5.974E-08	5.731E-06	8.289E-10	1.074E-08	5.802E-06
산성비	kg SO₂-eq.	5.286E-03	2.769E-03	5.073E-02	4.719E-04	5.925E-02
부영양화	kg PO ₄ 3-eq.	2.104E-03	5.196E-04	9.440E-03	2.835E-04	1.235E-02
광화학스모그	kg C₂H₄-eq.	1.194E-03	2.149E-05	2.136E-04	8.385E-05	1.513E-03
물발자국	m³ H₂O-eq.	7.082E-01	2.218E-02	3.740E-01	1.064E-04	1.104E+00

(2) 영향범주에 대한 단계의 환경영향 비율

환경영향범주	단위	제조전단계	제조단계	사용	폐기	총값
자원발자국	kg Sb-eq.	4.9%	4.9%	89.8%	0.4%	100%
탄소발자국	kg CO₂-eq.	5.1%	4.9%	89.0%	1.0%	100%
오존층영향	kg CFC-11-eq.	1.0%	98.8%	0.0%	0.2%	100%
산성비	kg SO₂-eq.	8.9%	4.7%	85.6%	0.8%	100%
부영양화	kg PO ₄ 3-eq.	17.0%	4.2%	76.5%	2.3%	100%
광화학스모그	kg C₂H₄-eq.	78.9%	1.4%	14.1%	5.5%	100%
물발자국	m³ H₂O-eq.	64.1%	2.0%	33.9%	0.0%	100%

검증서

대상기관: 네이버 주식회사

검증 대상: 네이버 Clova Clock

사단법인 한국전과정평가학회는 에코에이불컨설팅 주식회사에서 수행한 "네이버 Clova Clock 제품 전과정평가 "가 ISO 14040:2006 및 ISO 14044:2006의 요건에 따라 적합하게 작성됨을 확인합니다.

2021년 09월 30일

사단법인 한국전과정평가학회장

President of the Korean Society for Life Cycle Assessment

Declaration of Conformity

Infomark Co., Ltd.

3rd Floor, Humaxvillage, 216, Hwangsaeul-ro, Bundang-gu, Seongnam-si, Gyeongqi-do, 463-875, KOREA

WE DECLARE UNDER OUR SOLE RESPONSIBILITY THAT THE PRODUCT:

PRODUCT: CLOVA Clock+

MODEL: NL-\$700KRL

Reference Report No.: CTS-R20-0052

TO WHICH THIS DECLARATION RELATES IS IN CONFORMITY WITH THE FOLLOWING STANDARDS AND NORMATIVE DOCUMENT:

EN 62321-1: 2013, EN 62321-2: 2014, EN 62321-3-1: 2014, EN 62321-3-2: 2014, EN 62321-4: 2014+A1: 2017, EN 62321-5: 2014, EN 62321-6: 2015, EN 62321-7-1: 2015, EN 62321-7-2: 2017, EN 62321-8: 2017, EN 50581: 2012

FOLLOWING THE PROVISIONS OF THE APPLICABLE DIRECTIVES

Restriction of the use of certain hazardous substances (RoHS) Directive 2011/65/EU

Authorized person

Date May 19, 2020

Name HYUK CHOI

Signature

NAVER